ViT (Vision Transformer)
The ViT (Vision Transformer) is a transformer-based neural network architecture for image classification. It divides an image into fixed-size patches, linearly embeds each patch, adds position embeddings, and processes the resulting sequence of vectors through a standard transformer encoder.
The ViT model was introduced in the paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" and has shown strong performance on image classification benchmarks.
jimm.models.vit.VisionTransformer
Bases: Module
Vision Transformer (ViT) model for image classification.
This implements the Vision Transformer as described in the paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
Source code in src/jimm/models/vit/vit_model.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | |
__call__(x)
Forward pass of the Vision Transformer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
Float[Array, 'batch height width channels']
|
Input tensor with shape [batch, height, width, channels] |
required |
Returns:
| Type | Description |
|---|---|
Float[Array, 'batch num_classes']
|
Float[Array, "batch num_classes"]: Output logits with shape [batch, num_classes] |
Source code in src/jimm/models/vit/vit_model.py
99 100 101 102 103 104 105 106 107 108 109 110 111 | |
__init__(num_classes=1000, in_channels=3, img_size=224, patch_size=16, num_layers=12, num_heads=12, mlp_dim=3072, hidden_size=768, dropout_rate=0.1, use_quick_gelu=False, use_gradient_checkpointing=False, do_classification=True, dtype=jnp.float32, param_dtype=jnp.float32, rngs=nnx.Rngs(0), mesh=None, mesh_rules=DEFAULT_SHARDING)
Initialize a Vision Transformer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_classes
|
int
|
Number of output classes. Defaults to 1000. |
1000
|
in_channels
|
int
|
Number of input channels. Defaults to 3. |
3
|
img_size
|
int
|
Size of the input image (assumed square). Defaults to 224. |
224
|
patch_size
|
int
|
Size of each patch (assumed square). Defaults to 16. |
16
|
num_layers
|
int
|
Number of transformer layers. Defaults to 12. |
12
|
num_heads
|
int
|
Number of attention heads. Defaults to 12. |
12
|
mlp_dim
|
int
|
Size of the MLP dimension. Defaults to 3072. |
3072
|
hidden_size
|
int
|
Size of the hidden dimension. Defaults to 768. |
768
|
dropout_rate
|
float
|
Dropout rate. Defaults to 0.1. |
0.1
|
use_quick_gelu
|
bool
|
Whether to use quickgelu instead of gelu. Defaults to False. |
False
|
use_gradient_checkpointing
|
bool
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
do_classification
|
bool
|
Whether to include the final classification head. Defaults to True. |
True
|
dtype
|
DTypeLike
|
Data type for computations. Defaults to jnp.float32. |
float32
|
param_dtype
|
DTypeLike
|
Data type for parameters. Defaults to jnp.float32. |
float32
|
rngs
|
Rngs
|
Random number generator keys. Defaults to nnx.Rngs(0). |
Rngs(0)
|
mesh
|
Mesh | None
|
Optional JAX device mesh for parameter sharding. Defaults to None. |
None
|
mesh_rules
|
MeshRules
|
Logical axis sharding rules. Defaults to DEFAULT_SHARDING. |
DEFAULT_SHARDING
|
Source code in src/jimm/models/vit/vit_model.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | |
from_pretrained(model_name_or_path, use_pytorch=False, mesh=None, dtype=jnp.float32, param_dtype=jnp.float32, use_gradient_checkpointing=False, rngs=nnx.Rngs(0))
classmethod
Load a pretrained Vision Transformer from a local path or HuggingFace Hub.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_name_or_path
|
str
|
Path to local weights or HuggingFace model ID. |
required |
use_pytorch
|
bool
|
Whether to load from PyTorch weights. Defaults to False. |
False
|
mesh
|
Mesh | None
|
Optional device mesh for parameter sharding. Defaults to None. |
None
|
dtype
|
DTypeLike
|
Data type for computations. Defaults to jnp.float32. |
float32
|
param_dtype
|
DTypeLike
|
Data type for parameters. Defaults to jnp.float32. |
float32
|
use_gradient_checkpointing
|
bool
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
rngs
|
Rngs
|
Random number generator keys. Defaults to nnx.Rngs(0). |
Rngs(0)
|
Returns:
| Name | Type | Description |
|---|---|---|
VisionTransformer |
VisionTransformer
|
Initialized Vision Transformer with pretrained weights |
Source code in src/jimm/models/vit/vit_model.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
save_pretrained(save_directory)
Save the model weights and config in HuggingFace format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
save_directory
|
str
|
Directory path where the model will be saved. |
required |
Source code in src/jimm/models/vit/vit_model.py
142 143 144 145 146 147 148 149 150 | |